Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

ITO-free inverted polymer solar cells with ZnO:Al cathodes and stable top anodes

Identifieur interne : 001A48 ( Main/Repository ); précédent : 001A47; suivant : 001A49

ITO-free inverted polymer solar cells with ZnO:Al cathodes and stable top anodes

Auteurs : RBID : Pascal:12-0090010

Descripteurs français

English descriptors

Abstract

We report on the application of ZnO:Al as the transparent conductive oxide in high performance inverted polymer solar cells. We show that the optimized inverted architecture, which does not contain low work function metals or water-based transport layers, can be employed without sacrificing device efficiency. The widely studied P3HT:PCBM donor-acceptor system was chosen for the active layer. ZnO:Al layers were produced by dc-magnetron sputtering on glass substrates and used as the cathode. The thickness of ZnO:Al was optimized to achieve a low sheet resistance while maintaining high transmission. The resulting ZnO:Al layers were smoother than the reference ITO samples, and the active layers could be processed directly onto ZnO:Al without employing additional buffer layers. The structure of the top anodic contact was also optimized. Initial devices with an Au layer demonstrated poor results, and device performance improved when a MoO3/Ag anode was used. Control devices in the standard forward structure using commercial ITO coated glass substrates were compared to the ZnO:Al based cells. Higher photocurrents were obtained in the inverted structures than in the ITO-based solar cells due to the higher transmittance of ZnO:Al in the spectral range where the blend absorbs.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0090010

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">ITO-free inverted polymer solar cells with ZnO:Al cathodes and stable top anodes</title>
<author>
<name sortKey="De Sio, Antonietta" uniqKey="De Sio A">Antonietta De Sio</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Energy and Semiconductor Research Laboratory, Institute of Physics, Carl von Ossietzky University of Oldenburg</s1>
<s2>26111 Oldenburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>26111 Oldenburg</wicri:noRegion>
<wicri:noRegion>Carl von Ossietzky University of Oldenburg</wicri:noRegion>
<wicri:noRegion>26111 Oldenburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chakanga, Kambulakwao" uniqKey="Chakanga K">Kambulakwao Chakanga</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Division Photovoltaics, Next Energy, EWE-Forschungszentrum für Energietechnologie e.V</s1>
<s2>26129 Oldenburg</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>26129 Oldenburg</wicri:noRegion>
<wicri:noRegion>EWE-Forschungszentrum für Energietechnologie e.V</wicri:noRegion>
<wicri:noRegion>26129 Oldenburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sergeev, Oleg" uniqKey="Sergeev O">Oleg Sergeev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Division Photovoltaics, Next Energy, EWE-Forschungszentrum für Energietechnologie e.V</s1>
<s2>26129 Oldenburg</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>26129 Oldenburg</wicri:noRegion>
<wicri:noRegion>EWE-Forschungszentrum für Energietechnologie e.V</wicri:noRegion>
<wicri:noRegion>26129 Oldenburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Von Maydell, Karsten" uniqKey="Von Maydell K">Karsten Von Maydell</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Division Photovoltaics, Next Energy, EWE-Forschungszentrum für Energietechnologie e.V</s1>
<s2>26129 Oldenburg</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>26129 Oldenburg</wicri:noRegion>
<wicri:noRegion>EWE-Forschungszentrum für Energietechnologie e.V</wicri:noRegion>
<wicri:noRegion>26129 Oldenburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parisi, J Rgen" uniqKey="Parisi J">J Rgen Parisi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Energy and Semiconductor Research Laboratory, Institute of Physics, Carl von Ossietzky University of Oldenburg</s1>
<s2>26111 Oldenburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>26111 Oldenburg</wicri:noRegion>
<wicri:noRegion>Carl von Ossietzky University of Oldenburg</wicri:noRegion>
<wicri:noRegion>26111 Oldenburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Von Hauff, Elizabeth" uniqKey="Von Hauff E">Elizabeth Von Hauff</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Institute of Physics, Albert-Ludwigs University of Freiburg</s1>
<s2>79104 Freiburg</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Fraunhofer Institute for Solar Energy Systems (ISE</s1>
<s2>79110 Freiburg</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0090010</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0090010 INIST</idno>
<idno type="RBID">Pascal:12-0090010</idno>
<idno type="wicri:Area/Main/Corpus">002200</idno>
<idno type="wicri:Area/Main/Repository">001A48</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active layer</term>
<term>Aluminium base alloys</term>
<term>Anode</term>
<term>Buffer layer</term>
<term>Butyric acid</term>
<term>Cathode</term>
<term>Cathodic sputtering</term>
<term>Coated material</term>
<term>Coatings</term>
<term>Comparative study</term>
<term>Conducting material</term>
<term>Control device</term>
<term>Direct current</term>
<term>Ester</term>
<term>Fullerene compounds</term>
<term>Glass</term>
<term>High performance</term>
<term>Indium oxide</term>
<term>Molybdenum oxide</term>
<term>Optimization</term>
<term>Organic solar cells</term>
<term>Performance evaluation</term>
<term>Photoelectric current</term>
<term>Polymer blends</term>
<term>Sheet resistivity</term>
<term>Solar cell</term>
<term>Standards</term>
<term>Styrenesulfonate polymer</term>
<term>Thickness</term>
<term>Thiophene derivative polymer</term>
<term>Tin addition</term>
<term>Transparent material</term>
<term>Water flow</term>
<term>Work function</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Addition étain</term>
<term>Cellule solaire organique</term>
<term>Cathode</term>
<term>Anode</term>
<term>Haute performance</term>
<term>Optimisation</term>
<term>Travail sortie</term>
<term>Ecoulement eau</term>
<term>Evaluation performance</term>
<term>Couche active</term>
<term>Courant continu</term>
<term>Pulvérisation cathodique</term>
<term>Epaisseur</term>
<term>Résistivité couche</term>
<term>Couche tampon</term>
<term>Organe commande</term>
<term>Norme</term>
<term>Revêtement</term>
<term>Etude comparative</term>
<term>Courant photoélectrique</term>
<term>Cellule solaire</term>
<term>Oxyde d'indium</term>
<term>Oxyde de zinc</term>
<term>Matériau conducteur</term>
<term>Matériau transparent</term>
<term>Thiophène dérivé polymère</term>
<term>Acide butyrique</term>
<term>Ester</term>
<term>Composé du fullerène</term>
<term>Verre</term>
<term>Oxyde de molybdène</term>
<term>Matériau revêtu</term>
<term>Alliage base aluminium</term>
<term>Styrènesulfonate polymère</term>
<term>Mélange polymère</term>
<term>ITO</term>
<term>ZnO</term>
<term>MoO3</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Norme</term>
<term>Verre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report on the application of ZnO:Al as the transparent conductive oxide in high performance inverted polymer solar cells. We show that the optimized inverted architecture, which does not contain low work function metals or water-based transport layers, can be employed without sacrificing device efficiency. The widely studied P3HT:PCBM donor-acceptor system was chosen for the active layer. ZnO:Al layers were produced by dc-magnetron sputtering on glass substrates and used as the cathode. The thickness of ZnO:Al was optimized to achieve a low sheet resistance while maintaining high transmission. The resulting ZnO:Al layers were smoother than the reference ITO samples, and the active layers could be processed directly onto ZnO:Al without employing additional buffer layers. The structure of the top anodic contact was also optimized. Initial devices with an Au layer demonstrated poor results, and device performance improved when a MoO
<sub>3</sub>
/Ag anode was used. Control devices in the standard forward structure using commercial ITO coated glass substrates were compared to the ZnO:Al based cells. Higher photocurrents were obtained in the inverted structures than in the ITO-based solar cells due to the higher transmittance of ZnO:Al in the spectral range where the blend absorbs.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>98</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>ITO-free inverted polymer solar cells with ZnO:Al cathodes and stable top anodes</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DE SIO (Antonietta)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHAKANGA (Kambulakwao)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SERGEEV (Oleg)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>VON MAYDELL (Karsten)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PARISI (Jürgen)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>VON HAUFF (Elizabeth)</s1>
</fA11>
<fA14 i1="01">
<s1>Energy and Semiconductor Research Laboratory, Institute of Physics, Carl von Ossietzky University of Oldenburg</s1>
<s2>26111 Oldenburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Division Photovoltaics, Next Energy, EWE-Forschungszentrum für Energietechnologie e.V</s1>
<s2>26129 Oldenburg</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of Physics, Albert-Ludwigs University of Freiburg</s1>
<s2>79104 Freiburg</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Fraunhofer Institute for Solar Energy Systems (ISE</s1>
<s2>79110 Freiburg</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>52-56</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000508662100050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0090010</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report on the application of ZnO:Al as the transparent conductive oxide in high performance inverted polymer solar cells. We show that the optimized inverted architecture, which does not contain low work function metals or water-based transport layers, can be employed without sacrificing device efficiency. The widely studied P3HT:PCBM donor-acceptor system was chosen for the active layer. ZnO:Al layers were produced by dc-magnetron sputtering on glass substrates and used as the cathode. The thickness of ZnO:Al was optimized to achieve a low sheet resistance while maintaining high transmission. The resulting ZnO:Al layers were smoother than the reference ITO samples, and the active layers could be processed directly onto ZnO:Al without employing additional buffer layers. The structure of the top anodic contact was also optimized. Initial devices with an Au layer demonstrated poor results, and device performance improved when a MoO
<sub>3</sub>
/Ag anode was used. Control devices in the standard forward structure using commercial ITO coated glass substrates were compared to the ZnO:Al based cells. Higher photocurrents were obtained in the inverted structures than in the ITO-based solar cells due to the higher transmittance of ZnO:Al in the spectral range where the blend absorbs.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Cathode</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Cathode</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Cátodo</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Anode</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Anode</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Anodo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Haute performance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>High performance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Alto rendimiento</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Travail sortie</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Work function</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Función de trabajo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Ecoulement eau</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Water flow</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Flujo agua</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Couche active</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Active layer</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Capa activa</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Courant continu</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Direct current</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Corriente contínua</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Pulvérisation cathodique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Cathodic sputtering</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Pulverización catódica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Epaisseur</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Thickness</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Espesor</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Résistivité couche</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Sheet resistivity</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Resistividad capa</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Couche tampon</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Buffer layer</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Capa tampón</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Organe commande</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Control device</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Órgano mando</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Norme</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Standards</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Norma</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Revêtement</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Coatings</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Revestimiento</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Courant photoélectrique</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Photoelectric current</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Corriente fotoeléctrica</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Matériau conducteur</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Conducting material</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Material conductor</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Matériau transparent</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Transparent material</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Material transparente</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Acide butyrique</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Butyric acid</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Butírico ácido</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Ester</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Ester</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Ester</s0>
<s5>28</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>Composé du fullerène</s0>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="3" l="ENG">
<s0>Fullerene compounds</s0>
<s5>29</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Verre</s0>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="X" l="ENG">
<s0>Glass</s0>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="X" l="SPA">
<s0>Vidrio</s0>
<s5>30</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Oxyde de molybdène</s0>
<s5>31</s5>
</fC03>
<fC03 i1="31" i2="X" l="ENG">
<s0>Molybdenum oxide</s0>
<s5>31</s5>
</fC03>
<fC03 i1="31" i2="X" l="SPA">
<s0>Molibdeno óxido</s0>
<s5>31</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>Matériau revêtu</s0>
<s5>32</s5>
</fC03>
<fC03 i1="32" i2="X" l="ENG">
<s0>Coated material</s0>
<s5>32</s5>
</fC03>
<fC03 i1="32" i2="X" l="SPA">
<s0>Material revestido</s0>
<s5>32</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>Alliage base aluminium</s0>
<s2>NK</s2>
<s5>33</s5>
</fC03>
<fC03 i1="33" i2="3" l="ENG">
<s0>Aluminium base alloys</s0>
<s2>NK</s2>
<s5>33</s5>
</fC03>
<fC03 i1="34" i2="X" l="FRE">
<s0>Styrènesulfonate polymère</s0>
<s2>NK</s2>
<s5>34</s5>
</fC03>
<fC03 i1="34" i2="X" l="ENG">
<s0>Styrenesulfonate polymer</s0>
<s2>NK</s2>
<s5>34</s5>
</fC03>
<fC03 i1="34" i2="X" l="SPA">
<s0>Estireno sulfonato polímero</s0>
<s2>NK</s2>
<s5>34</s5>
</fC03>
<fC03 i1="35" i2="3" l="FRE">
<s0>Mélange polymère</s0>
<s5>35</s5>
</fC03>
<fC03 i1="35" i2="3" l="ENG">
<s0>Polymer blends</s0>
<s5>35</s5>
</fC03>
<fC03 i1="36" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="37" i2="X" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="38" i2="X" l="FRE">
<s0>MoO3</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fN21>
<s1>072</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A48 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001A48 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0090010
   |texte=   ITO-free inverted polymer solar cells with ZnO:Al cathodes and stable top anodes
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024